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Negations
● A proposition is a statement that is either true or 

false.
● Some examples:

● If n is an even integer, then n2 is an even integer.
● Ø = ℝ.

● The negation of a proposition X is a proposition that 
is true when X is false and is false when X is true.

● For example, consider the proposition “it is snowing 
outside.”
● Its negation is “it is not snowing outside.”
● Its negation is not “it is sunny outside.” ⚠
● Its negation is not “we’re in the Bay Area.” ⚠



  

How do you find the negation
of a statement?



  

“All My Friends Are Taller Than Me”

Me
My Friends



  

The negation of the universal statement

Every P is a Q

is the existential statement

There is a P that is not a Q.



  

The negation of the universal statement

For all x, P(x) is true.

is the existential statement

There exists an x where P(x) is false.
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The negation of the existential statement

There exists a P that is a Q

is the universal statement

Every P is not a Q.



  

The negation of the existential statement

There exists an x where P(x) is true

is the universal statement

For all x, P(x) is false.



  

Your Turn!
● What’s the negation of the following 

statement?
“Every brown dog

loves every orange cat.”



  

Your Turn!
● What’s the negation of the following 

statement?
“Every brown dog

loves every orange cat.”
● Answer:

“There is a brown dog
that doesn’t love
some orange cat”
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First, let’s reflect on the direct proof

technique we saw Wednesday.
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To prove

“If P  is true, then Q is true,”

we start by asking our reader to 
assume P is true.
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More generally speaking,

the process looks like this:



  

We start with a statement (or statements) 
we know (or assume) to be true.
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Next, we apply sound logic and rational 
argument to arrive at other true statements!

n is even

Direct Proof
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This gives rise to a powerful proof

technique called proof by contradiction!
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Summary: Proof by Contradiction

● Key Idea: Prove a statement P is true by 
showing that it isn’t false.

● First, assume that P is false. The goal is to 
show that this assumption is silly.

● Next, show this leads to an impossible result.
● For example, we might have that 1 = 0, that 

x ∈ S and x ∉ S, that a number is both even and 
odd, etc.

● Finally, conclude that since P can’t be false, 
we know that P must be true.



  

An Example: Set Cardinalities



  

Set Cardinalities
● We’ve seen sets of many different cardinalities:

● |Ø| = 0
● |{1, 2, 3}| = 3
● |{ n ∈ ℕ | n < 137 }| = 137
● |ℕ| = ₀.ℵ
● | (ℕ)| > |ℕ|℘

● These span from the finite up through the infinite.
● Question: Is there a “largest” set? That is, is 

there a set that’s bigger than every other set?



  

Theorem: There is no largest set.
Proof: Assume for the sake of contradiction that

there is a largest set; call it S.
Now, consider the set (℘ S). By Cantor’s Theorem, 
we know that |S| < | (℘ S)|, so (℘ S) is a larger set 
than S. This contradicts the fact that S is the 
largest set.
We’ve reached a contradiction, so our 
assumption must have been wrong. Therefore, 
there is no largest set. ■
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Notice that we're announcing

1. that this is a proof by contradiction, and
2. what, specifically, we're assuming.

This helps the reader understand where we're 
going. Remember – proofs are meant to be 
read by other people!
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Latin Squares
● A Latin square is an n × n grid filled with the numbers 

1, 2, …, n such that every number appears in each row 
and each column exactly once.

● The main diagonal of a Latin square runs from the 
top-left corner to the bottom-right corner.

● A Latin square is symmetric if the numbers are 
symmetric across the main diagonal.

? ? ? ?? ?
2 5 1 46 3
5 2 6 34 1
4 3 2 15 6
6 1 3 52 4
1 4 5 63 2

4 3 1 52
2 1 4 35
5 2 3 14
1 4 5 23
3 5 2 41

3 4 2 1
2 1 3 4
4 2 1 3
1 3 4 2

1 23
2 3 1
1 2 3

3 6 4 21 5
2 5 1 46 3
5 2 6 34 1
4 3 2 15 6
6 1 3 52 4
1 4 5 63 2
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● A Latin square is an n × n grid filled with the numbers 
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3 1 2 45
1 5 3 24
4 2 5 13
5 4 1 32
2 3 4 51

1 23
2 3 1
1 2 3
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Latin Squares
● Notice anything about what’s on the main 

diagonals of these symmetric Latin squares?
● Theorem: Every odd-sized symmetric Latin 

square has every number 1, 2, …, n on its main 
diagonal.

3 1 2 45
1 5 3 24
4 2 5 13
5 4 1 32
2 3 4 51

1 23
2 3 1
1 2 3

3 1 2 54
5 3 4 21
4 2 3 15
1 4 5 32
2 5 1 43

4 2 1 53
2 5 3 14
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1 3 2 45
5 1 4 32



  

Theorem: Every symmetric Latin square of odd size n × n has each
of the numbers 1, 2, …, n on its main diagonal.

Proof: Assume for the sake of contradiction that there is a 
symmetric Latin square of odd size n × n where one of the
numbers 1, 2, 3, …, n does not appear on the main diagonal.
Call the missing number r.
Let k be the number of times r appears above the main diagonal. 
Since the Latin square is symmetric, there are also k copies of r 
below the main diagonal. And because r doesn’t appear on the 
main diagonal, that accounts for all copies of r, so there are 
exactly 2k copies of r.
Independently, we know that r appears n times in the Latin 
square, once for each of its n rows.
Combining these results, we see that n = 2k. This means that n 
is even, contradicting the fact that n is odd. We’ve reached a 
contradiction, so our assumption was wrong. Therefore, all 
symmetric Latin squares of odd size n × n have each of the 
numbers 1, 2, …, and n on their main diagonals. ■
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What is the negation of the theorem?

Every symmetric Latin square of odd size n × n has
each of the numbers 1, 2, …, n on its main diagonal.

One option:

There is a symmetric Latin square of odd size n × n
that does not have one of the numbers 1, 2, …, n on

its main diagonal.



  

Theorem: Every symmetric Latin square of odd size n × n has each
of the numbers 1, 2, …, n on its main diagonal.

Proof: Assume for the sake of contradiction that there is a 
symmetric Latin square of odd size n × n where one of the
numbers 1, 2, 3, …, n does not appear on the main diagonal.
Call the missing number r.
Let k be the number of times r appears above the main diagonal. 
Since the Latin square is symmetric, there are also k copies of r 
below the main diagonal. And because r doesn’t appear on the 
main diagonal, that accounts for all copies of r, so there are 
exactly 2k copies of r.
Independently, we know that r appears n times in the Latin 
square, once for each of its n rows.
Combining these results, we see that n = 2k. This means that n 
is even, contradicting the fact that n is odd. We’ve reached a 
contradiction, so our assumption was wrong. Therefore, all 
symmetric Latin squares of odd size n × n have each of the 
numbers 1, 2, …, and n on their main diagonals. ■

What is the negation of the theorem?

Every symmetric Latin square of odd size n × n has
each of the numbers 1, 2, …, n on its main diagonal.

One option:

There is a symmetric Latin square of odd size n × n
that does not have one of the numbers 1, 2, …, n on

its main diagonal.



  

Theorem: Every symmetric Latin square of odd size n × n has each
of the numbers 1, 2, …, n on its main diagonal.

Proof: Assume for the sake of contradiction that there is a 
symmetric Latin square of odd size n × n where one of the
numbers 1, 2, 3, …, n does not appear on the main diagonal.
Call the missing number r.
Let k be the number of times r appears above the main diagonal. 
Since the Latin square is symmetric, there are also k copies of r 
below the main diagonal. And because r doesn’t appear on the 
main diagonal, that accounts for all copies of r, so there are 
exactly 2k copies of r.
Independently, we know that r appears n times in the Latin 
square, once for each of its n rows.
Combining these results, we see that n = 2k. This means that n 
is even, contradicting the fact that n is odd. We’ve reached a 
contradiction, so our assumption was wrong. Therefore, all 
symmetric Latin squares of odd size n × n have each of the 
numbers 1, 2, …, and n on their main diagonals. ■

What is the negation of the theorem?

Every symmetric Latin square of odd size n × n has
each of the numbers 1, 2, …, n on its main diagonal.

One option:

There is a symmetric Latin square of odd size n × n
that does not have one of the numbers 1, 2, …, n on

its main diagonal.



  

Theorem: Every symmetric Latin square of odd size n × n has each
of the numbers 1, 2, …, n on its main diagonal.

Proof: Assume for the sake of contradiction that there is a 
symmetric Latin square of odd size n × n that does not have one
of the numbers 1, 2, 3, …, n on its main diagonal. Call the
missing number r.
Let k be the number of times r appears above the main diagonal. 
Since the Latin square is symmetric, there are also k copies of r 
below the main diagonal. And because r doesn’t appear on the 
main diagonal, that accounts for all copies of r, so there are 
exactly 2k copies of r.
Independently, we know that r appears n times in the Latin 
square, once for each of its n rows.
Combining these results, we see that n = 2k. This means that n 
is even, contradicting the fact that n is odd. We’ve reached a 
contradiction, so our assumption was wrong. Therefore, all 
symmetric Latin squares of odd size n × n have each of the 
numbers 1, 2, …, and n on their main diagonals. ■



  

Theorem: Every symmetric Latin square of odd size n × n has each
of the numbers 1, 2, …, n on its main diagonal.

Proof: Assume for the sake of contradiction that there is a 
symmetric Latin square of odd size n × n that does not have one
of the numbers 1, 2, 3, …, n on its main diagonal. Call the
missing number r.
Let k be the number of times r appears above the main diagonal. 
Since the Latin square is symmetric, there are also k copies of r 
below the main diagonal. And because r doesn’t appear on the 
main diagonal, that accounts for all copies of r, so there are 
exactly 2k copies of r.
Independently, we know that r appears n times in the Latin 
square, once for each of its n rows.
Combining these results, we see that n = 2k. This means that n 
is even, contradicting the fact that n is odd. We’ve reached a 
contradiction, so our assumption was wrong. Therefore, all 
symmetric Latin squares of odd size n × n have each of the 
numbers 1, 2, …, and n on their main diagonals. ■

Notice that we're announcing

1. that this is a proof by contradiction, and
2. what, specifically, we're assuming.

This helps the reader understand where we're 
going. Remember – proofs are meant to be 
read by other people!
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The three key pieces:
 

   1. Say that the proof is by contradiction.
   2. Say what you are assuming is the negation of the statement to prove.
   3. Say you have reached a contradiction and what the contradiction means.
 

In CS103, please include all these steps in your proofs!



  

Time-Out for Announcements!

(Intermission)



  

   Problem Set One     
● Problem Set One goes out today. It’s due 

next Friday at 1:00PM.
● Explore the language of set theory and 

better intuit how it works.
● Learn more about the structure of 

mathematical proofs.
● Write your first “freehand” proofs based on 

your experiences.
● As always, start early, and reach out if 

you have any questions!



  

       Office Hours        
● It is completely normal in this class to need to 

get help from time to time.
● Feel free to ask clarifying and conceptual 

questions on EdStem.
● Need more structured help? We have office hours! 

Feel free to stop on by.
● Check out the online “Guide to Office Hours” for more 

information about how our office hours system works.
● The OH calendar will soon be available on the course 

website.
● Office hours start next Monday.



  

  Readings for Today   
● On the course website we have some information 

you should look over.
● First is the Proofwriting Checklist. It contains 

information about style expectations for proofs. 
We’ll be using this when grading, so be sure to read 
it over.

● Next is the Guide to Office Hours, which talks 
about how our office hours work and how to make 
the most effective use of them.

● Finally is the Guide to LaTeX, which explains how 
to use LaTeX to typeset your problem sets in a way 
that’s so beautiful it will bring tears to your eyes.



  

Back to CS103!
(the lights flash in the atrium)



  

Logical Negation

             ¬PP

Logical Implication

Q

P

Proof by Contrapositive

P Q

¬P¬Q

Proof by Contradiction

?



  

Proof by Contradiction

?
Logical Negation

             ¬PP

Proof by Contrapositive

P Q

¬P¬Q

Logical Implication

Q

P



  

Logical Implication
Act III



  
An implication is a statement of the form

“If P is true, then Q is true.”

If n is an even integer, then n2 is an even integer.
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If n is an even integer, then n2 is an even integer.

This part of the 
implication is called 
the antecedent.

This part of the 
implication is called 
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An implication is a statement of the form

“If P is true, then Q is true.”

If n is an even integer, then n2 is an even integer.

If m and n are odd integers, then m+n is even.

If you like the way you look that much,
then you should go and love yourself.



  
An implication is a statement of the form

“If P is true, then Q is true.”

If a flying pig bursts into the room and sings a 
pitch-perfect version of the national anthem, then 

Sean will throw cookies to the class.
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This one often surprises people! 
It’s part of our definition of 
implication and diverges from 
how conditional statements work 

in code.
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contract is violated

✅contract is not violated

✅contract is not violated

😡

This one reveals how to 
negate an implication!

The only time “if P, then Q” 
is false is when P is true and 

Q is false.



  

What Implications Mean
“If there's a rainbow in the sky,
then it's raining somewhere.”

● In mathematics, implication is directional.
● The above statement doesn't mean that if it's raining 

somewhere, there has to be a rainbow.
● In mathematics, implications only say something 

about the consequent when the antecedent is true.
● If there's no rainbow, it doesn't mean there's no rain.

● In mathematics, implication says nothing about 
causality.
● Rainbows do not cause rain. 😃



  

What Implications Mean
● In mathematics, a statement of the form

For any x, if P(x) is true, then Q(x) is true
means that any time you find an object x 
where P(x) is true, you will see that Q(x) is 
also true (for that same x).

● There is no discussion of causation here. It 
simply means that if you find that P(x) is 
true, you'll find that Q(x) is also true.



  

Implication, Diagrammatically

Set of objects x where
Q(x) is true.

Set of objects x where
P(x) is true.

Any time P is 
true, Q is 

true as well.

If P isn't 
true, Q may 

or may not be 
true.



  

How do you negate an implication?

Question: What has to happen for this contract to be broken?

Answer: A flying pig sings the national anthem, but Sean 
doesn’t throw cookies to the class.

Consider once again the

“if           , then        ”

contract.
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The negation of the statement
  

“For any x, if P(x) is true,
then Q(x) is true”

  

is the statement
  

“There is at least one x where
P(x) is true and Q(x) is false.”

  

The negation of an implication
is not an implication!

Key take-away!



Key take-away!

  

The negation of the statement
  

“For any x, if P(x) is true,
then Q(x) is true”

  

is the statement
  

“There is at least one x where
P(x) is true and Q(x) is false.”

  

The negation of an implication
is not an implication!



If p is a puppy,
then I do love p!

       ❤🐕

If p is a puppy,
then I don’t love p!

❤🐕

It’s
complicated.

❤🐕



  

How to Negate Universal Statements:
“For all x, P(x) is true”

becomes
“There is an x where P(x) is false.”

How to Negate Existential Statements:
“There exists an x where P(x) is true”

becomes 
“For all x, P(x) is false.”

How to Negate Implications:
“For every x, if P(x) is true, then Q(x) is true”

becomes
“There is an x where P(x) is true and Q(x) is false.”
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Proof by Contrapositive
Act IV



  

Times where
P is true

Times where
Q is true

If P is true, then Q is true.
If Q is false, then P is false.

Anything inside this 
inner bubble is also 
inside the outer 

bubble.

Anything outside this 
outer bubble is 
outside the inner 

bubble.



  

The Contrapositive
● The contrapositive of the implication

If P is true, then Q is true
is the implication

If Q is false, then P is false.
● The contrapositive of an implication means 

exactly the same thing as the implication itself.

If it’s a puppy, then I love it.

If I don’t love it, then it’s not a puppy.



  

The Contrapositive
● The contrapositive of the implication

If P is true, then Q is true
is the implication

If Q is false, then P is false.
● The contrapositive of an implication means 

exactly the same thing as the implication itself.

If I store cat food inside, then raccoons won’t steal it.

If raccoons stole the cat food, then I didn’t store it inside.



  

To prove the statement
 

“if P is true, then Q is true,”
 

you can choose to instead prove the 
equivalent statement

 
“if Q is false, then P is false,”

 
if that seems easier. 

This is called a proof by contrapositive.



  

Theorem: For any n ∈ ℤ, if n2 is even, then n is even.
 

Proof: We will prove the contrapositive of this
statement, that if n is odd, then n2 is odd. So let
n be an arbitrary odd integer; we’ll show that
n2 is odd as well.

 

We know that n is odd, which means there is an
integer k such that n = 2k + 1. This in turn tells
us that

 

n2 = (2k + 1)2

n2 = 4k2 + 4k + 1
n2 = 2(2k2 + 2k) + 1.

 

From this, we see that there is an integer m
(namely, 2k2 + 2k) such that n2 = 2m + 1. That
means that n2 is odd, which is what we needed
to show. ■
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This is a courtesy to the 
reader and says “heads up! 
we’re not going to do a 

regular old-fashioned direct 
proof here.”
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if n2 is even, then n is even.

If n is odd, then n2 is odd.
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Here, we're explicitly writing out the 
contrapositive. This tells the reader 
what we're going to prove. It also 
acts as a sanity check by forcing us 

to write out what we think the 
contrapositive is.
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We've said that we're going 
to prove this new implication, 
so let's go do it! The rest of 
this proof will look a lot like a 

standard direct proof.
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The general pattern here is the following:

1. Start by announcing that we're going to 
use a proof by contrapositive so that the 

reader knows what to expect.

2. Explicitly state the contrapositive of what 
we want to prove.

3. Go prove the contrapositive.
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Biconditionals
● The previous theorem, combined with what we saw on 

Wednesday, tells us the following:
For any integer n, if n is even, then n2 is even.
For any integer n, if n2 is even, then n is even.

● These are two different implications, each going the 
other way.

● We use the phrase if and only if to indicate that two 
statements imply one another.

● For example, we might combine the two above 
statements to say
for any integer n: n is even if and only if n2 is even.



  

Proving Biconditionals
● To prove a theorem of the form

P if and only if Q,
you need to prove two separate statements.
● First, that if P is true, then Q is true.
● Second, that if Q is true, then P is true.

● You can use any proof techniques you'd like 
to show each of these statements.
● In our case, we used a direct proof for one and 

a proof by contrapositive for the other.



  

What We Learned
● How do you negate formulas?

● It depends on the formula. There are nice rules for how to 
negate universal and existential statements and implications.

● What's a proof by contradiction?
● It's a proof of a statement P that works by showing that P 

cannot be false.
● What's an implication?

● It's statement of the form “if P, then Q,” and states that if P is 
true, then Q is true.

● What is a proof by contrapositive?
● It's a proof of an implication that instead proves its 

contrapositive.
● (The contrapositive of “if P, then Q” is “if not Q, then not P.”)



  

Your Action Items
● Read “Guide to Office Hours,” the 

“Proofwriting Checklist,” and the “Guide 
to LaTeX.”
● There’s a lot of useful information there. In 

particular, be sure to read the Proofwriting 
Checklist, as we’ll be working through this 
checklist when grading your proofs!

● Start working on PS1.
● At a bare minimum, read over it to see what’s 

being asked. That’ll give you time to turn things 
over in your mind this weekend.



  

Next Time
● Mathematical Logic

● How do we formalize the reasoning from our 
proofs?

● Propositional Logic
● Reasoning about simple statements.

● Propositional Equivalences
● Simplifying complex statements.



  

Appendix: Proving Implications by 
Contradiction



  

Proving Implications
● Suppose we want to prove this implication:

If P is true, then Q is true.
● We have three options available to us:

● Direct Proof: 
Assume P is true, then prove Q is true.

● Proof by Contrapositive.
Assume Q is false, then prove that P is false.

● Proof by Contradiction.
… what does this look like?
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Theorem: For any integer n, if n2 is even, then n is even.
Proof: Assume for the sake of contradiction that n is an

integer and that n2 is even, but that n is odd.
 

Since n is odd we know that there is an integer k such
that

 

n = 2k + 1 (1)
 

Squaring both sides of equation (1) and simplifying
gives the following:

 

  n2 = (2k + 1)2

= 4k2 + 4k + 1
= 2(2k2 + 2k) + 1 (2)

 

Equation (2) tells us that n2 is odd, which is impossible;
by assumption, n2 is even.

 

We have reached a contradiction, so our assumption
must have been incorrect. Thus if n is an integer and
n2 is even, n is even as well. ■
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What is the negation of our theorem?
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The three key pieces:
 

   1. Say that the proof is by contradiction.
   2. Say what the negation of the original statement is.
   3. Say you have reached a contradiction and what the
      contradiction entails.
 

In CS103, please include all these steps in your proofs!



  

Theorem: For any integer n, if n2 is even, then n is even.
Proof: Assume for the sake of contradiction that there is

an integer n where n2 is even, but n is odd.
 

Since n is odd we know that there is an integer k such
that

 

   n = 2k + 1. (1)
 

Squaring both sides of equation (1) and simplifying
gives the following:
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Proving Implications
● Suppose we want to prove this implication:

If P is true, then Q is true.
● We have three options available to us:

● Direct Proof: 
Assume P is true, then prove Q is true.

● Proof by Contrapositive.
Assume Q is false, then prove that P is false.

● Proof by Contradiction.
Assume P is true and Q is false,

then derive a contradiction.


